# A Computational Prospect of Infinity: <br> $\omega_{1}$-Recursion Theory 

Noam Greenberg

August 10, 2005

## Definition

A set $A \subset \omega_{1}$ is $\omega_{1}$-recursively enumerable if it is $\Sigma_{1}\left(L_{\omega_{1}}\right)$-definable.

## DEFINITION

A set $A \subset \omega_{1}$ is $\omega_{1}$-recursive if it is $\omega_{1}$-r.e. and $\omega_{1}$-co-r.e.
DEFINITION
A (perhaps partial) function $f: \omega_{1} \rightarrow \omega_{1}$ is (partial) recursive if its graph is $\omega_{1}$-r.e.

Enumeration Theorem There is a complete $\omega_{1}$-r.e. set.

## Induction Theorem

If $I: L_{\omega_{1}} \rightarrow \omega_{1}$ is computable, then there is a (unique) computable $f: \omega_{1} \rightarrow \omega_{1}$ such that for all $\beta<\omega_{1}, f(\beta)=I(f \upharpoonright \beta)$.

## Turing Reducibility

Let $\mathcal{S}=2^{<\omega_{1}}$.
If $\Phi \subset \mathcal{S}^{2}$ and $A \in 2^{\leqslant \omega_{1}}$ then

$$
\Phi(A)=\cup\{\sigma: \exists \tau \in \mathcal{S}(\tau \subset A \&(\tau, \sigma) \in \Phi)\}
$$

## DEFINITION

An $\omega_{1}$-Turing functional is an $\omega_{1}$-r.e. $\Phi \subset \mathcal{S}^{2}$ which is consistent. for all $A \in 2^{\leqslant \omega_{1}}, \Phi(A) \in 2^{\leqslant \omega_{1}}$.

## Turing Reducibility

Let $\mathcal{S}=2^{<\omega_{1}}$.
If $\Phi \subset \mathcal{S}^{2}$ and $A \in 2^{\leqslant \omega_{1}}$ then

$$
\Phi(A)=\cup\{\sigma: \exists \tau \in \mathcal{S}(\tau \subset A \&(\tau, \sigma) \in \Phi)\}
$$

## DEFINITION

An $\omega_{1}$-Turing functional is an $\omega_{1}$-r.e. $\Phi \subset \mathcal{S}^{2}$ which is consistent. for all $A \in 2^{\leqslant \omega_{1}}, \Phi(A) \in 2^{\leqslant \omega_{1}}$.

FACT
The following are equivalent for $A, B \in 2^{\omega_{1}}$ :

- $B$ is $\Delta_{1}\left(L_{\omega_{1}}, A\right)$-definable.
- There is some $\omega_{1}$-Turing functional $\Phi$ such that $\Phi(A)=B$.


## THEOREM

Let $X \subset \omega_{1}$ ．Then there is a linear ordering $\mathcal{L}_{X}$ such that for all $Y \subset \omega_{1}$ ，there is a $Y$－computable copy of $\mathcal{L}_{X}$ iff $Y$ computes $X$ ．

## THEOREM

There is no embedding of the 1-3-1 lattice into the $\omega_{1}-$ r.e. degrees.

## THEOREM

Let $\alpha$ be an admissible ordinal. Suppose that there is an embedding of the 1-3-1 lattice into the $\alpha-$ r.e. degrees. Then $\operatorname{Th}\left(\mathcal{R}_{\alpha}\right)$ is not hyperarithmetical.

## THEOREM

Let $\alpha$ be an admissible ordinal. Suppose that there is an embedding of the 1-3-1 lattice into the $\alpha$-r.e. degrees. Then $\alpha$ is effectively countable: $\mathbf{0}_{\alpha}^{\prime}$ can compute both a partial counting of $\alpha$ and a cofinal $\omega$-sequence in $\alpha$.

## THEOREM

Suppose that $\alpha$ is an effectively countable admissible ordinal.
Then models of arithmetic, in the style of Slaman-Woodin, together with specified non-hyperarithmetical sets, can be coded and decoded in $\mathcal{R}_{\alpha}$.

## REMARK

For any admissible ordinal $\alpha$, the 1-3-1 lattice embeds in $\mathcal{R}_{\alpha}$ iff $\alpha$ is effectively countable.

Corollary
For any admissible ordinal $\alpha, \mathcal{R}_{\alpha} \not \equiv \mathcal{R}_{\omega}$.

