A Computational Prospect of Infinity: ω_1 -Recursion Theory

Noam Greenberg

August 10, 2005

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

DEFINITION

A set $A \subset \omega_1$ is ω_1 -recursively enumerable if it is $\Sigma_1(L_{\omega_1})$ -definable.

DEFINITION A set $A \subset \omega_1$ is ω_1 -recursive if it is ω_1 -r.e. and ω_1 -co-r.e.

DEFINITION

A (perhaps partial) function $f: \omega_1 \to \omega_1$ is (partial) *recursive* if its graph is ω_1 -r.e.

◆□▶ ◆御▶ ◆注≯ ◆注≯ ─ 注

ENUMERATION THEOREM There is a complete ω_1 -r.e. set.

INDUCTION THEOREM

If $I: L_{\omega_1} \to \omega_1$ is computable, then there is a (unique) computable $f: \omega_1 \to \omega_1$ such that for all $\beta < \omega_1$, $f(\beta) = I(f \upharpoonright \beta)$.

TURING REDUCIBILITY

Let $S = 2^{<\omega_1}$. If $\Phi \subset S^2$ and $A \in 2^{\leqslant \omega_1}$ then

$$\Phi(A) = \cup \{ \sigma \ : \ \exists \tau \in \mathcal{S} \ (\tau \subset A \And (\tau, \sigma) \in \Phi) \}$$

DEFINITION

An ω_1 -*Turing functional* is an ω_1 -r.e. $\Phi \subset S^2$ which is *consistent*: for all $A \in 2^{\leqslant \omega_1}$, $\Phi(A) \in 2^{\leqslant \omega_1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

TURING REDUCIBILITY

Let $S = 2^{<\omega_1}$. If $\Phi \subset S^2$ and $A \in 2^{\leqslant \omega_1}$ then

$$\Phi(\mathcal{A}) = \cup \{ \sigma \ : \ \exists \tau \in \mathcal{S} \ (\tau \subset \mathcal{A} \And (\tau, \sigma) \in \Phi) \}$$

DEFINITION

An ω_1 -*Turing functional* is an ω_1 -r.e. $\Phi \subset S^2$ which is *consistent*: for all $A \in 2^{\leq \omega_1}$, $\Phi(A) \in 2^{\leq \omega_1}$.

Fact

The following are equivalent for $A, B \in 2^{\omega_1}$:

- B is $\Delta_1(L_{\omega_1}, A)$ -definable.
- There is some ω_1 -Turing functional Φ such that $\Phi(A) = B$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三里 - のへで

Let $X \subset \omega_1$. Then there is a linear ordering \mathcal{L}_X such that for all $Y \subset \omega_1$, there is a Y-computable copy of \mathcal{L}_X iff Y computes X.

<ロ> (四) (四) (三) (三) (三) (三)

There is no embedding of the 1-3-1 lattice into the ω_1 -r.e. degrees.

Let α be an admissible ordinal. Suppose that there is an embedding of the 1-3-1 lattice into the α -r.e. degrees. Then Th(\mathcal{R}_{α}) is not hyperarithmetical.

《曰》 《聞》 《臣》 《臣》 三臣 …

Let α be an admissible ordinal. Suppose that there is an embedding of the 1-3-1 lattice into the α -r.e. degrees. Then α is effectively countable: $\mathbf{0}'_{\alpha}$ can compute both a partial counting of α and a cofinal ω -sequence in α .

THEOREM

Suppose that α is an effectively countable admissible ordinal. Then models of arithmetic, in the style of Slaman-Woodin, together with specified non-hyperarithmetical sets, can be coded and decoded in \mathcal{R}_{α} .

REMARK

For any admissible ordinal α , the 1-3-1 lattice embeds in \mathcal{R}_{α} iff α is effectively countable.

COROLLARY For any admissible ordinal α , $\mathcal{R}_{\alpha} \not\equiv \mathcal{R}_{\omega}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで